Phenylvaleric Acid and Flavonoid Glycosides from Polygonum salicifolium

Ihsan Calis,*,† Ayse Kuruüzüm, ${ }^{\dagger}$ L. Ömür Demirezer, ${ }^{\dagger}$ Otto Sticher, ${ }^{\ddagger}$ Walter Ganci, ${ }^{\S}$ and Peter Rüedi§ Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-061000 Ankara, Turkey, Swiss Federal Institute of Technol ogy (ETH) Zurich, Department of Pharmacy, CH-8057 Zurich, Switzerland, and University of Zurich, Institute of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Received February 22, 1999
(3R)-O- β-D-Glucopyranosyloxy-5-phenylvaleric acid (1), (3R)-O- β-D-glucopyranosyloxy-5-phenylvaleric acid n-butyl ester (2), and a new dihydrochal cone diglycoside 4'-O-[β-D-glucopyranosyl-(1 $\rightarrow 6$)-glucopyranosyl]-oxy-2'-hydroxy-3', 6^{\prime}-dimethoxydi hydrochal cone (3), together with six known flavonoid glycosides [kaempferol-3-O- β-D-glucopyranoside (= astragalin) (4), kaempferol-3-O- β-D-galactopyranoside (5), quercetin-3-O- β -D-glucopyranoside (= isoquercitrin) (6), quercetin-3-O- β-D-gal actopyranoside (= hyperoside) (7), quercetin-3-O-(2"-O-galloyl)- β-D-glucopyranoside (8), and quercetin-3-O- β-D-glucuronopyranoside (9)] were isolated from the aerial parts of Polygonum salicifolium. The structure elucidation of the isolated compounds was performed by spectroscopic (UV, IR, ESI-MS, 1D- and 2D-NMR), chemical (methylation, enzymatic hydrolysis, partial synthesis), and chromatographic methods (HPLC, Chiralcel OD). The flavonoid glycosides (4-9) demonstrated scavenging properties toward the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical in TLC autographic assays.

The genus Polygonum (Polygonaceae) is represented by thirty-three species in the flora of Turkey. ${ }^{1,2}$ Some of them are used in traditional medicine against kidney stones and as antidiabetic, diuretic, and antidiarrhoeal agents. ${ }^{3}$ Flavonoids, ${ }^{4}$ chal cones, ${ }^{5-8}$ anthraquinones, ${ }^{9}$ naphthoquinone, ${ }^{9}$ sesquiterpenoids, ${ }^{10}$ lignans, ${ }^{11}$ coumarins, ${ }^{12}$ stilbene glycoside, ${ }^{13}$ and acetophenone glycosides ${ }^{14}$ are some of the secondary metabolites isolated from Polygonum species. There is only one paper reported on Polygonum salicifolium, showing the presence of kaempferol-7-O-rhamnoglucoside, quercetin-7-O-galactoside, orobol-7-O-glucoside, and isorhamnetin-3-O-gal actoside in the leaves, stems, and flowers of P. salicifolium. ${ }^{15}$ We now report on the isolation and structure elucidation of the novel compounds 1-3, in addition to six known flavonoid glycosides (4-9) from the aerial parts of P. salicifolium Brouss. ex Willd (Chart 1).

Results and Discussion

The methanolic extract of the aerial parts of P. salicifolium was concentrated and suspended in water and partitioned with solvents of increasing polarity (n-hexane, diethyl ether, ethyl acetate, and n-butanol). The n-BuOH residue was fractionated on polyamide and repeated column chromatography (silica gel, RP-18, Sephadex LH-20) to yield compounds 1-9.

Compound 1 was obtained as a colorless powder, $[\alpha]^{23}{ }_{D}$ -7.5° (c $0.22, \mathrm{MeOH}$). The molecular formula of $\mathbf{1}$ was determined to be $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{8}$ on the basis of negative-ion ESIMS (m/z $355[\mathrm{M}-\mathrm{H}]^{-}, 711[2 \mathrm{M}-\mathrm{H}]^{-}$). In the UV spectrum of $\mathbf{1}$, the maximum bands are at 268, 261, 252, and 248 nm . Its IR spectrum showed absorption bands due to hydroxy ($3369 \mathrm{~cm}^{-1}$), carboxyl ($1713 \mathrm{~cm}^{-1}$), aromatic ($1567 \mathrm{~cm}^{-1}$), and ether (1077 and $1033 \mathrm{~cm}^{-1}$) groups. Sixteen carbons comprising six aromatic carbons, one hydroxymethine, three methylenes (except for the - COOH carbon due to an aglycone), and six carbons due to glucopyranose were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (Table 1). The ${ }^{1} \mathrm{H}$ NMR and DQF-COSY spectrum of $\mathbf{1}$

[^0]
Chart 1

3

$4 R^{1}=H, R^{2}=\beta$-D-glucopyranose
$5 \quad R^{1}=H, R^{2}=\beta$-D-galactopyranose
$6 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\beta$-D-glucopyranose
$7 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\beta$-D-galactopyranose
$8 \quad R^{1}=O H, R^{2}=\beta-D-\left(2^{\prime \prime}\right.$-O-galloyl)-glucopyranose
$9 \quad \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\beta$-D-glucuronopyranose
revealed the presence of a monosubstituted benzene ring [$\delta 7.22$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$), 7.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}$)] and a

Table 1. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Spectral Data for Compounds 1, 1a, 1b, and $\mathbf{2}\left({ }^{13} \mathrm{C}, 75.5 \mathrm{MHz} ;{ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{MeOD}\right)$ and HMBC Correlations for $\mathbf{1}^{\text {a }}$

position	1				1a	1b		2
	C atom	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\mathrm{H}}(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$	HMBC (from C to H)	$\delta_{\mathrm{H}}(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$	δ_{H} (ppm)	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\mathrm{H}}(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$
1	C	181.7		H-2, H-3			173.7	
2	CH_{2}	45.2	2.41 dd (14.7, 5.5)	$\mathrm{H}-3, \mathrm{H}-4$	2.56 dd (15.5, 5.7)	2.66 m	42.7	2.41 dd (15.3, 6.0)
			2.64 dd($14.7,7.0$)		2.80 dd (15.5, 6.8)	2.79 m		2.81 dd (15.3, 6.5)
3	CH	78.3	4.17 m	H-1", H-2, H-4	4.11 m	4.22 m	78.0	$4.08{ }^{\text {b }}$
4	CH_{2}	37.9	1.92 m	H-2, H-5	1.89 m	1.78 m	37.9	1.90 m
5	CH_{2}	32.4	2.78 m	H-3, H-4, H-2', H-6'	2.79 m	2.44 m	32.1	$2.80{ }^{\text {b }}$
COOCH_{3}					3.66 s			
$1{ }^{\prime}$	C	143.0		H-5			143.3	
$2 '$	CH	129.3	7.22 m	H-3', H-4', H-5	7.23 m	7.20 m	129.5	7.23 m
3	CH	129.5	7.22 m	H-4'	7.23 m	7.20 m	129.3	7.23 m
4^{\prime}	CH	126.7	7.12 m	H-2', H-3', H-5', H-6'	7.15 m	7.20 m	126.7	7.17 m
5 '	CH	129.5	7.22 m	H-4'	7.23 m	7.20 m	129.3	7.23 m
6^{\prime}	CH	129.3	7.22 m	$\mathrm{H}-4^{\prime}$	7.23 m	7.20 m	129.5	7.23 m
glucose								
$1{ }^{\prime \prime}$	CH	103.8	4.41 d (7.7)	H-3, H-5'	4.34 d (7.8)		104.4	4.35 d (7.8)
$2^{\prime \prime}$	CH	75.2	$3.22{ }^{\text {b }}$	H-3"	$3.18 \mathrm{dd}(7.8,8.5)$		75.2	3.18 dd (7.8, 8.8)
3"	CH	78.1	$3.42{ }^{\text {b }}$	H-5"	$3.32^{\text {b }}$		77.6	3.36 t (8.8)
$4^{\prime \prime}$	CH	71.6	$3.30{ }^{\text {b }}$	H-3'	$3.27{ }^{\text {b }}$		71.7	$3.28{ }^{\text {b }}$
$5^{\prime \prime}$	CH	77.9	$3.28{ }^{\text {b }}$		$3.19{ }^{\text {b }}$		77.4	$3.22{ }^{\text {b }}$
$6{ }^{\prime \prime}$	CH_{2}	62.8	$3.86 \text { dd (12.0, 2.0) }$		$3.80 \mathrm{dd}(11.8,2.0)$		62.9	$3.81 \mathrm{dd}(12.0,2.0)$
			$3.66 \text { dd (12.0, 4.5) }$		$3.60 \mathrm{dd}(11.8,5.0)$			$3.63 \text { dd (12.0, 5.5) }$
butyl ${ }^{\text {c }}$								
$1^{\prime \prime \prime}$	CH_{2}						65.5	4.08 m
$2^{\prime \prime \prime}$	CH_{2}						20.1	1.60 m
$3^{\prime \prime \prime}$	CH_{2}						31.7	1.38 m
$4^{\prime \prime \prime}$	CH_{3}						14.0	0.94 m

${ }^{\text {a }}$ The assignments were based on DEPT, DQF-COSY, HMQC, and HMBC. ${ }^{\text {b }}$ Signal patterns are unclear due to overlapping.
β-glucopyranosyl moiety [$\delta 4.41$ (d, J $=7.7 \mathrm{~Hz}$)]. On the other hand, three sets of methylene protons [$\delta 1.92(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4 \mathrm{]}, 2.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.7,5.5 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{a}), 2.64(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=14.7,7.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~b}), 2.78(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$] and one oxymethine proton at $\delta 4.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$ were successively coupled. The ${ }^{13} \mathrm{C}$ NMR signals of $\mathbf{1}$ were assigned with the help of an HMQC experiment, establishing direct $\mathrm{C}-\mathrm{H}$ bonding. The connectivities of the molecular fragments were established by a heteronuclear multiple bond correlation experiment (HMBC), where the long-range correlations were observed between C-1, H-2'; C-1, H-3; C-1', H-5; C-5, $\mathrm{H}-2^{\prime}$; and $\mathrm{C}-5, \mathrm{H}-6^{\prime}$. This experiment also clarified the site of glycosidation showing a long-range correlation between the anomeric proton of glucose at $\delta_{\mathrm{H}} 4.41$ (d, J $=7.7 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime \prime}$) and the oxygenated carbon atom at $\delta_{\mathrm{C}} 78.3$ (C-3).

Methylation of $\mathbf{1}$ with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ yielded the ester 1a. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a}$ reveal ed a methyl resonance (3H) at $\delta 3.66$ arising from the carbomethoxy group. This result supported that the presence of a free carboxyl group in 1. Thus, the constitution of $\mathbf{1}$ was determined to be $3-0-\beta$ -glucopyranosyloxy-5-phenylvaleric acid. Such a compound has been isolated recently from Perilla frutescens (Labiatae); however, its absolute configuration remained open. ${ }^{16}$

The absolute configuration at C-3 of $\mathbf{1}$ was determined as follows. ${ }^{17}$ Enzymatic hydrolysis with β-glucosidase yielded 3-hydroxyphenylvaleric acid (1b) (13 NMR data, seeTable 1). Esterification of $\mathbf{1 b}$ with $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ yielded the hydroxy-ester $\mathbf{1 c}$ which was identified unambiguously as the (R)-enantiomer by HPLC (Chiralcel OD, hexane/2propanol 9:1, $k^{\prime}=2.66$, ee > 99\%). The respectivereference compounds $\mathbf{1 c}\left((+)-(R), k^{\prime}=2.66\right)$, ent-1c ((-$\left.)-(S), k^{\prime}=2.24\right)$ have been prepared by reduction of methyl 3-oxo-5-phenylvaleroate with NaBH_{4} to yield the racemic mixture ($\mathrm{k}^{\prime}=$ 2.24 and 2.66) and enantioselective hydrogenation ${ }^{18}$ with (R)-BINAP-Ru/H H_{2} afforded $1 \mathbf{c}$ and (S)-BINAP-Ru/H2 yielded ent-1c. ${ }^{17}$ Moreover, the substrate specificity of β-glucosidase confirms the expected D-series of the glucose moiety. Consequently, the structure of $\mathbf{1}$ was established as (3R)-O- β-D-glucopyranosyloxy-5-phenylvaleric acid.

The molecular formula of compound 2 ($[\alpha]^{23}{ }_{\mathrm{D}}-10.5^{\circ}$ (c $0.22, \mathrm{MeOH})$) was determined to be $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{8}$ on the basis of positive ion ESIMS ($\mathrm{m} / \mathrm{z} 435[\mathrm{M}+\mathrm{Na}]^{+}, 847$ [2M + $\mathrm{Na}]^{+}$). In the UV spectrum of $\mathbf{2}$, the maximum bands were observed at 268, 259, 253, and 247 nm . The IR spectrum showed absorption bands due to hydroxy ($3402 \mathrm{~cm}^{-1}$), ester ($1732 \mathrm{~cm}^{-1}$), aromatic ($1567 \mathrm{~cm}^{-1}$), and ether groups (1078 and $1033 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 (Table 1) were similar to those of $\mathbf{1}$ except for the presence of signals due to a butyl moiety. A COSY experiment showed the proton resonances in the same spin system which were assigned to a n -butyl moiety: $\delta 0.94(\mathrm{t}, 3 \mathrm{H} \mathrm{J}=7.3 \mathrm{~Hz}$, Me-4"'); 1.38 (m, 2H, H $-33^{\prime \prime \prime}$); 1.60 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{2}-2^{\prime \prime \prime}$); 4.08 (t , $\left.2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{H}_{2}-1^{\prime \prime \prime}\right)$. The HMQC experiment correlated all proton resonances with those of the corresponding carbons of the butyl moiety ($\delta 65.5 \mathrm{t}, 20.1 \mathrm{t}, 31.7 \mathrm{t}$, and 14.0 q; C-1"'-C-4"', respectively). The information concerning the linkage of the n-butyl moiety was obtained from the HMBC spectrum. The long-range correlations were observed from the following pairs: C-1 ($\delta 173.7$)/ $\mathrm{H}_{2}-1^{\prime \prime \prime}(\delta$ 4.08) and $\mathrm{C}-1 / \mathrm{H}_{2}-2$ ($\delta 2.81$ and 2.55). Furthermore, the longrange correlations between $\mathrm{C}-3(\delta 78.0)$ and $\mathrm{H}-1^{\prime \prime}(\delta 4.35)$, and $\mathrm{C}-1^{\prime}(\delta 143.3)$ and $\mathrm{H}_{2}-5(\delta 2.80)$ supported the proposed assignments. Therefore, the structure of $\mathbf{2}$ was established to be (3R)-O- β-D-glucopyranosyloxy-5-phenylvaleric acid butyl ester. Since we used n-BuOH during the extraction procedure, compound $\mathbf{2}$ is considered to be an artifact.

Compound $\mathbf{3}$ was obtained as an amorphous, pale yellow powder, $[\alpha]^{23} \mathrm{D}-20.0^{\circ}$ (c 0.12, MeOH). The elemental formula of $\mathbf{3}$ was determined as $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5}$ by negative and positive ion ESIMS (m/z $625[\mathrm{M}-\mathrm{H}]^{-}$, and $649[\mathrm{M}+\mathrm{Na}]^{+}$, respectively), ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. The complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ connectivity was established by extensive use and interpretation of 2D $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right) \mathrm{COSY}, \mathrm{HMQC}$ (one-bond ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation), and HMBC (long range ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation) NMR spectra. This provided unequivocally the atomic network for $\mathbf{3}$ (Table 2). The UV spectrum of $\mathbf{3}$ showed absorption bands at 333, 287, 233 (sh), and 208 nm . The IR spectrum of $\mathbf{3}$ showed absorbances for hydroxy

Table 2. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Spectral Data for Compound $\mathbf{3}\left({ }^{13} \mathrm{C}, 75.5 \mathrm{MHz} \text {; }{ }^{1} \mathrm{H}, 300 \mathrm{MHz}, \mathrm{MeOD}\right)^{\mathrm{a}}$

position	C atom	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\mathrm{H}}(\mathrm{ppm}), \mathrm{J}(\mathrm{Hz})$	HMBC (form C to H)
1	C	142.9		$\mathrm{H}-2, \mathrm{H}-6, \mathrm{H}_{2}-\alpha, \mathrm{H}_{2}-\beta$
2	CH	129.4	7.20 m	$\mathrm{H}_{2}-\beta$
3	CH	129.4	7.20 m	
4	CH	127.0	7.14 m	H-3, H-5
5	CH	129.4	7.20 m	
6	CH	129.4	7.20 m	$\mathrm{H}_{2}-\beta$
α	CH_{2}	47.4	$3.31{ }^{\text {b }}$	
β	CH_{2}	31.7	2.96 t (7.8)	
$\mathrm{C}=0$	C	207.0		$\mathrm{H}_{2}-\alpha, \mathrm{H}_{2}-\beta$
1	C	108.3		H-5'
$2 '$	C	162.8		
$3{ }^{\prime}$	C	132.3		H-5', OMe (C-3')
$4{ }^{\prime}$	C	157.3		H-1", $\mathrm{H}-5^{\prime}$
5	CH	91.3	6.37 s	
6 '	C	159.9		OMe (C-6'), $\mathrm{H}-5^{\prime}$
OMe (C-3')	CH_{3}	61.5	3.79 s	
OMe (C-6')	CH_{3}	56.8	3.90 s	
glucose				
1 1'	CH	101.1	5.07 d (7.2)	
2 "	CH	74.7	$3.52{ }^{\text {b }}$	
3 "	CH	78.1	$3.30{ }^{\text {b }}$	
4 "	CH	71.3	$3.38{ }^{\text {b }}$	
$5 \prime$	CH	77.6	$3.77{ }^{\text {b }}$	
6 "	CH_{2}	70.3	$\begin{aligned} & 4.16 \text { br d (11.8) } \\ & 3.80^{6} \end{aligned}$	H-1''
terminal glucose				
$1^{\prime \prime \prime}$	CH	105.1	4.31 d (7.7)	$\mathrm{H}_{2}-6^{\prime \prime}$
$2 \prime \prime$	CH	75.1	3.16 dd (7.7, 8.5)	
$3 \prime \prime$	CH	78.0	$3.22{ }^{\text {b }}$	
$4^{\prime \prime \prime}$	CH	71.5	$3.24{ }^{\text {b }}$	
5"'	CH	77.8	$3.50{ }^{\text {b }}$	
$6 \prime \prime$	CH_{2}	62.7	3.82 dd (11.8, 2.0)	
			3.63 dd (11.8, 5.2)	

${ }^{\text {a }}$ The assignments were based on DEPT, DQF-COSY, HMQC, and HMBC. ${ }^{\mathrm{b}}$ Signal patterns are unclear due to overlapping.
(3436 and $3400 \mathrm{~cm}^{-1}$), a conjugated ketone ($1625 \mathrm{~cm}^{-1}$), aromatic (1457 and $1420 \mathrm{~cm}^{-1}$), and ether groups (1068 and $1053 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum displayed the characteristic ABX pattern of a monosubstituted benzyl moiety, five proton multiplets ($\delta 7.20-7.14, \mathrm{~m}, \mathrm{H}-2,3,4,5,6$) characteristic of an unsubstituted B ring, two methoxy resonances at $\delta 3.90$ and 3.79, an aromatic proton at $\delta 6.37$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right)$, and two methylene signals linked to each other at $\delta 3.31\left(\mathrm{H}_{2}-\alpha\right)$ and $2.96\left(\mathrm{H}_{2}-\beta\right)$ (each 2 H , the former overlapped, the latter $\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$). Additionally, two anomeric proton resonances were observed at $\delta 5.07$ (d, J $=7.2 \mathrm{~Hz}$) and $4.31(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz})$, indicating its diglycosidic dihydrochal cone structure. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ exhibited 29 carbon resonances: 7 quaternary carbons (C), 16 methine $(\mathrm{CH}), 4$ methylene $\left(\mathrm{CH}_{2}\right)$, and 2 methyl $\left(\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data together with ESIMS supported the presence of two hexose units in 3. From the chemical shift values and the coupling constants of the anomeric protons, their glycosidations were found to be on a phenolic and an aliphatic hydroxyl group, respectively, and β-linkages for both. The remaining carbon resonances for the aglycone moiety supported that the aglycone moiety of $\mathbf{3}$ has a pentasubstituted A ring as in dihydropashanone ${ }^{19}$ except for the different substitution pattern, two methoxy and two hydroxy groups of which one of the latters was glycosylated with a disaccharide. The placement of all substituents on the A ring was established using 2D ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long-range correlation (HMBC) and ROESY NMR experiments. The long-range correlation between the quaternary carbon atom at $\delta 157.3$ (C-4') and the anomeric proton ($\delta 5.07$) of the inner glucose moiety showed the site of glycosidation. In addition, to the carbon resonance assigned as $\mathrm{C}-4^{\prime}(\delta 157.3$), the resonances at δ 108.3 (C-1'), 132.3 (C-3'), 159.9 (C-6') showed also the longrange correlations to the aromatic proton at $\delta 6.37$ (H-5').

Figure 1. Heteronuclear multiple-bond correlations for 3. Arrows point from carbon to proton.

The carbon resonances at $\delta 132.3$ (C-3') and 159.9 (C-6') exhibited long-range correlations to the methoxy signals at $\delta 3.79$ and 3.90, respectively, showing the site of these groups on the A ring. The other significant correlations are shown on Figure 1. Additionally, in the ROESY experiment, the anomeric proton ($\mathrm{H}-1^{\prime \prime}$) of the inner glucose and the methoxyl signal ($\delta_{\mathrm{H}} 3.90$) located at C-6' exhibited correlations to the aromatic proton at $\delta 6.37$ (H-5'), supporting the proposed substitution in the A ring. Apart from the anomeric protons, 2D NMR experiments (COSY and HMQC) indicated the presence of two glucose units. A HMBC experiment performed with 3, showed a correlation between the anomeric proton at $\delta 4.31$ ($\mathrm{H}-1^{\prime \prime \prime}$) and the carbon resonans at $\delta 70.3\left(\mathrm{CH}_{2}, \mathrm{H}-6^{\prime \prime}\right)$, indicating the presence of a 6-O- β-d-glucopyranosyl-glucose moiety as the disaccharidic sugar chain. Reversed correlations between the anomeric carbon of the terminal glucose moiety at δ 105.1 ($\mathrm{C}-1^{\prime \prime \prime}$) and the methylene protons of the inner glucose moiety at $\delta 4.16$ and $3.80\left(\mathrm{H}_{2}-6^{\prime \prime}\right)$ supported this proposal. The negative and positive ion ESI mass spectra of 3 exhibited ions at $\mathrm{m} / \mathrm{z} 301$ [aglycone $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}\right)-\mathrm{H}$]- and 303 [aglycone $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}\right)+\mathrm{H}$] were in good agreement for the proposed structure of the dihydrochal cone moiety. Consequently, the structure of compound $\mathbf{3}$ was established as 4'-O-[β-d-glucopyranosyl-($1 \rightarrow 6$)-glucopyranosyl]]oxy-2'-
hydroxy-3', 6'-dimethoxydihydrochalcone for which salicifolioside A is proposed as the trivial name.

The presence of dihydrochalcones as well as their glycosides in nature are very rare. Although there are some studies reporting methoxylated β-hydroxychal cone derivatives from Polygonum nepalense, ${ }^{5}$ dihydrochalcone and chal cone derivatives from P. Iapathifol ium,, , 7 there is only one report on dihydrochal cone monoglycosides from Polygonum species, Pol ygonum senegalense. ${ }^{8}$

The structures of the six known flavonoids, kaempferol-3-O- β-D-glucopyranoside (= astragalin) (4), ${ }^{20}$ kaempferol-3-O- β-D-gal actopyranoside (5), ${ }^{21}$ quercetin-3-O- β-D-glucopyranoside (=isoquercitrin) (6), ${ }^{20}$ quercetin-3-O- β-d-galactopyranoside ($=$ hyperoside) (7), ${ }^{20}$ quercetin-3-O-(2"-O-galloyl)- β-D-glucopyranoside (8), ${ }^{22}$ and quercetin-3-O- β-Dglucuronopyranoside (9), ${ }^{23}$ were identified on the basis of comparison of their spectroscopic (NMR, FABMS) data in comparison with literature values.

Radical-scavenging properties of the compounds (1-9) were evaluated against the DPPH radical. ${ }^{24,25}$ By using DPPH as a TLC spray reagent, compounds 4-9 (2, 4, 6, 8 $\mu \mathrm{g}$) appeared as yellow spots against a purple background, while compounds 1-3 did not react with the radical. Compounds 6-9, the quercetin glycosides, were more active in all concentrations applied, while the kaempferol glycosides 4 and 5 showed lower activity. These results indicate that ortho-hydroxyl groups are an essential feature for the antioxidant properties of the flavonoid type compounds.

Experimental Section

General Experimental Procedures. UV spectra were determined in spectroscopic grade MeOH on a Shimadzu UV160A spectrophotometer. IR spectra were determined on a Perkin-Elmer 2000 FT-IR spectrometer as pressed KBr disks. NMR spectra were recorded using a Bruker AMX300 instrument at 300 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$. Complete proton and carbon assignments are based on 1D $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and DEPT) and 2D (${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC, and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC) NMR experiments. ESI-MS was recorded on Hitachi-Perkin-Elmer-RMUGM mass spectrometer. TLC was carried out on precoated silica gel 60F-254 aluminum sheets (Merck). For column chromatography (CC), normal phase silica gel 60 ($0.063-0.200 \mathrm{~mm}, \mathrm{Merck}$), reversed phase silica gel (LiChroprep RP-18, Merck), Sephadex LH-20 (Fluka), and polyamide (Polyamid-MN -Polyamid SC 6, Macherey-Nagel, Düren) were used. Compounds were detected by UV fluorescence and/or spraying with vanillin $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent followed by heating at $100{ }^{\circ} \mathrm{C}$ for $5-10 \mathrm{~min}$ and/or exposure to NH_{3} vapor. For enzymatic hydrolysis, β-glucosidase from almonds (Emulsin, Fluka, Nr. 49289) was used. HPLC analyses of the (3R)- and (3S)-isomers of 3-hydroxyphenylvaleric acid were performed on Chiralcel OD ($250 \times 4.6 \mathrm{~mm}$) using hexane/2-propanol (9: 1) as eluent, flow rate $1 \mathrm{~mL} / \mathrm{min}$. For the radical-scavenging TLC autographic assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH, Fluka) was used as spray reagent.

Plant Material. P. salicifolium Brouss. ex Willd. was collected from Trabzon-Uzungöl (North Anatolia) in J uly, 1994. A voucher specimen has been deposited in the Herbarium of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University (HUEF 94-105).

Extraction and Isolation. The dried powdered aerial parts of P. salicifolium (300 g) were extracted twice with MeOH (2 $\times 3.5 \mathrm{~L}$) at $40^{\circ} \mathrm{C}$. The MeOH extracts were combined and evaporated to dryness in vacuo. The crude extract (42 g) was suspended in water and partitioned with n-hexane, diethyl ether, ethyl acetate, and n-butanol, respectively. The n-BuOH extract (7 g) was chromatographed over polyamide (100 g), eluting with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, followed by increasing concentrations of MeOH in $\mathrm{H}_{2} \mathrm{O}$ ($10 \%, 20 \%, 30 \%, 40 \%, 50 \%, 60 \%, 70 \%$, $80 \%, 90 \%$, and $100 \% \mathrm{MeOH}$; each mixture 200 mL ; fraction
volume 100 mL) to yield 22 fractions which were combined into seven main fractions (A-G).

The fraction eluted with $10 \% \mathrm{MeOH}$ (fraction A, 2.1 g) was chromatographed over CC using normal-phase silica gel (200 g) as stationary phase eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixtures, 80:20 (200 mL), 70:30 (200 mL), 60:40 (200 mL), 50:50 (200 $\mathrm{mL}), 40: 60(200 \mathrm{~mL}), 30: 70(200 \mathrm{~mL})$, and 10:90 (500 mL) to give 17 fractions ($100 \mathrm{~mL} / f$ fraction) which were combined to seven main groups on the basis of their TLC profiles. The fractions eluted with $60 \% \mathrm{MeOH}$ in CHCl_{3} was rechromatographed using MPLC (column dimensions $18.5 \times 352 \mathrm{~mm}$, LiChroprep RP-18) eluting with increasing amounts of MeOH in $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}, 200 \mathrm{~mL} ; 10 \% \mathrm{MeOH}, 200 \mathrm{~mL} ; 20 \% \mathrm{MeOH}, 200\right.$ mL; 30\% MeOH, 200 mL ; 40\% MeOH, 200 mL ; MeOH, 200 mL) to give 80 fractions ($15 \mathrm{~mL} /$ fraction). F ractions $31-41$ gave compound 1 (177 mg). The fractions eluted with 20-30\% MeOH (fraction B, 320 mg) were purified by repeated open CC (normal-phase silica gel) using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($90: 10$) solvent system to yield compound $2(31 \mathrm{mg})$. The fraction eluted with $40-50 \% \mathrm{MeOH}$ (fraction C, 178 mg) was chromatographed on a normal-phase silica gel column (20 g) eluting with EtOAc (500 mL); EtOAc/MeOH (100:5; 500 mL); EtOAc/MeOH/H2O (100:5:1; 400 mL); and $\mathrm{MeOH}(100 \mathrm{~mL}$), respectively ($10-15 \mathrm{~mL} /$ fraction). The combined fractions 5191 (54 mg) were further fractionated by normal phase silica gel (10 g) CC using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (90:10; $400 \mathrm{~mL} ; 8 \mathrm{~mL} /$ fraction) to give compound $\mathbf{3}$ (fractions 26-52; 17 mg).

Fraction E eluted with $70 \% \mathrm{MeOH}(607 \mathrm{mg})$ was repeatedly chromatographed over Sephadex LH-20 open CC using MeOH and normal-phase silica gel open CC using $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ mixtures (90:10:1, 80:20:2, 70:30:3) to yield four flavonoid glycosides (4-7). Chromatography of fraction G eluted with $90 \% \mathrm{MeOH}$ (604 mg) using similar conditions yielded compounds 8 and 9.
(3R)-O- β-D-Glucopyranosyloxy-5-phenylvaleric acid (1): col orless powder; $[\alpha]^{23_{D}}-7.5^{\circ}$ (c $0.22, \mathrm{MeOH}$); UV (MeOH) $\lambda_{\text {max }}$ 248, 252, 261, 268 nm ; IR (KBr) $\nu_{\max }$ 1033, 1077, 1567, 1713, $3369 \mathrm{~cm}^{-1}$; 1 H NMR (CD 3 OD, 300 MHz) see Table 1; ${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 75.5 \mathrm{MHz}$) see Table 1; ESIMS m/z $355[\mathrm{M}-\mathrm{H}]^{-}$, 711 [2M - H] .
Methylation of $\mathbf{1}$. Compound $\mathbf{1}(10 \mathrm{mg})$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to yield the ester la (6 mg) which was purified on silica gel (10 g) using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($80: 20: 2$) as eluent ($3 \mathrm{~mL} /$ fraction). ${ }^{1} \mathrm{H}$ NMR data, see Table 1.
Enzymatic Hydrolysis and Determination of the Absolute Configuration of $\mathbf{1}$. A solution of $\mathbf{1}(9 \mathrm{mg})$ in acetate buffer ($\mathrm{pH} 4.4,10 \mathrm{~mL}$) was treated with β-glucosidase (20 mg), and the solution was left at $37^{\circ} \mathrm{C}$ for 48 h . The reaction solution was evaporated to dryness, and the residue was chromatographed on silica gel (10 g), using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($90: 10: 1$) to afford $\mathbf{1 b}(4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR data, see Table 1.

The hydroxy-acid $\mathbf{1 b}$ was methylated with $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$ and purified on silica gel (hexane/AcOEt 2:1) to yield $\mathbf{1 c}(3 \mathrm{mg}$). HPLC on Chiralcel OD, with hexane/2-propanol (9:1) exhibited only one peak ($\mathrm{k}^{\prime}=2.66$, ee $>99 \%$).

Enantioselective hydrogenation of methyl 3-oxo-5-phenylvaleroate (188 mg) with (R)-BINAP-Ru/H2 ($30 \mathrm{bar}, 100{ }^{\circ} \mathrm{C}$, 24 h) in ethanol yielded after usual workup and chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$) $\mathbf{1 c}(170 \mathrm{mg}),[\alpha]^{23} \mathrm{D}=$ $+1.5^{\circ}$ (c 2.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HPLC on Chiralcel OD as above eluted the major enantiomer at $\mathrm{k}^{\prime}=2.66$ and the minor ent-1c at k^{\prime} $=2.24$ (ee $=72 \%)$. F or a full account on these transformations that unambiguously established the absol ute configuration, see ref 17.
(3R)-O- $\boldsymbol{\beta}$-D-Glucopyranosyloxy-5-phenylvaleric acid nbutyl ester (2): $[\alpha]^{23} \mathrm{D}-10.5^{\circ}$ (c 0.22 , MeOH); UV (MeOH) $\lambda_{\max } 247,253,259,268 \mathrm{~nm}$; IR (KBr) $\nu_{\text {max }} 1033,1078,1567$, 1713, $3402 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$) see Table 1; ${ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{OD}, 75.5 \mathrm{MHz}$) see Table 1; ESIMS m/z 435 [M + $\mathrm{Na}]^{+}, 847[2 \mathrm{M}+\mathrm{Na}]^{+}$.
Salicifolioside A (3): amorphous, pale yellow powder; $[\alpha]^{23}{ }_{\mathrm{D}}-20.0^{\circ}$ (c 0.12, MeOH); UV (MeOH) $\lambda_{\text {max }} 208,233$ (sh), 287, 333 nm ; IR (KBr) $v_{\text {max }}$ 1053, 1068, 1420, 1457, 1625, 3400, $3436 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$, 75 MHz), see Table 2; Negative ion ESIMS m/z $625[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}$,

301 [aglycone $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}\right)$ - H]-; Positive ion ESIMS m/z 649 $[\mathrm{M}+\mathrm{Na}]^{+}, 303$ [aglycone $\left.\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}\right)+\mathrm{H}\right]^{+}$.

Kaempferol-3-0- β-D-glucopyranoside ($=$ astragalin) (4): ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{20}$

Kaempferol-3-O- β-D-galactopyranoside (5): ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{21}$

Quercetin-3-O- β-D-glucopyranoside (= isoquercitrin) (6): ${ }^{1 H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{20}$

Quercetin-3-O- β-D-galactopyranoside (= hyperoside) (7): ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{20}$

Quercetin-3-O-(2'-O-galloyl)- β-D-glucopyranoside (8): ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{22}$

Quercetin-3-O- β-D-glucuronopyranoside (9): ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) data superimposable with those reported in the literature. ${ }^{23}$

Reaction of DPPH Radical. TLC Autographic Assay. After developing and drying, TLC plates were sprayed with a 0.2% DPPH solution in MeOH . The plates were examined 30 min after spraying. Active compounds appear as yellow spots against a purple background. ${ }^{24,25}$ Quercetin was used as reference compound.

References and Notes

(1) Davis, P. H. Flora of Turkey and the E ast Aegean Islands; University Press: Edinburgh, 1967; Vol. 2.
(2) Davis, P. H. FIora of Turkey and theE ast Aegean Islands; University Press: Edinburgh, 1988; Vol 10.
(3) Baytop, T. Therapy with Medicinal Plants (Past and Present); Istanbu University Publications: Istanbul, 1984; p 313.
(4) Isobe, T.; Noda, Y. Yakugaku Zasshi 1987, 107, 1001-1004.
(5) Rathore, A.; Sharma, S. C.; Tandon, J. S. J . Nat. Prod. 1987, 50, 357359.
(6) Ahmed, M.; K haleduzzaman, M.; Rashid, M. A. Phytochemistry 1988, 27, 2359-2360
(7) Ahmed, M.; K haleduzzaman, M.; Islam, M. S. Phytochemistry 1990, 20, 2009-2011.
(8) Maradufu, A.; Ouma, J. H. Phytochemistry 1978, 17, 823-824.
(9) Kimura, Y.; Kozawa, M.; Baba, K.; Hata, K. Planta Medica 1983, 48, 164-168.
(10) Fukuyama, Y.; Sato, T.; Miura, I.; Asakawa, Y. Phytochemistry 1985, 24, 1521-1524.
(11) Kim, H. J.; Woo, E.-R.; Park, H. J . Nat. Prod. 1994, 57, 581-586.
(12) Petrescu, A. D. Plant. Med. Phytother. 1974, 8, 224-227.
(13) Layatilake, G. S.; J ayastiriya, H.; Lee, E. S.; Koonchanok, N. M.; Geahlen, R. L.; Ashendel, C. L.; McLaughlin, J. L.; Chang, C. J. J. Nat. Prod. 1993, 56, 1805-1810.
(14) Yoshizaki, M.; Fujino, H.; Arise, A.; Ohmiira, K.; Arisawa, M.; M orita, N. Planta Medica 1987, 52, 273-275.
(15) Balbaa, S. I.; Afifi, M. S. Bull. Pharm. Sci., Assiut Univ. 1988, 11, 176-184.
(16) Fujita, T.; Terato, K.; Nakayama, M. Biosci. Biotech. Biochem 1996, 60, 732-735.
(17) Calis, I.; Kuruüzüm, A.; Ganci, W.; Rüedi, P. Tetrahedron Asymmetry 1999, 10 (submitted).
(18) Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. J . Am. Chem. Soc. 1988, 110, 629-631 and references therein.
(19) Ichino, K.; Tanaka, H.; Ito, K.; Tanaka, T.; Mizuno, M. J . Nat. Prod. 1988, 51, 915-917.
(20) Markham, K. R.; Geiger, H. In Theflavonoids: Advances in research since 1986; Harborne, J. B., Ed.; Chapman \& Hall: London, 1993; Chapter 10, pp 441-447.
(21) Agrawal, P. K.; Rastogi, R. P. Heterocycles 1981, 16, 2181-2236.
(22) Kuroyanagi, M.; Yamamoto, Y.; Fukushima, S.; Ueno, A.; Noro, T.; Miyase, T. Chem. Pharm. Bull. 1982, 30, 1602-1608.
(23) Nawwar, M. A. M.; Souleman, A. M. A.; Buddrus, J .; Linscheid, M. Phytochemistry 1984, 23, 2347-2349.
(24) Takao, T.; Kitatani, F.; Watanabe, N.; Yagi, A.; Sakata, K. Biosci. Biotechnol. Biochem. 1994, 58, 1780-1783.
(25) Cuendet, M.; Hostettmann, K.; Potterat, O.; Dyatmiko, W. Helv. Chim. Acta 1997, 80, 1144-1152.

NP9900674

[^0]: * To whom correspondence should be addressed. Fax: +90 3123114777. E-mail: acalis@dominet.in.com.tr.
 ${ }^{\dagger}$ Hacettepe University.
 \ddagger Swiss Federal Institute of Technology.
 § University of Zurich.

